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5 Conclusions

The present document discusses some technologies in the field of power generation, management and
transmission of electrical energy in terms of efficiency, and identifies among them the most promising sectors
for energy saving at the EU level.

Electricity generation looks like the sector where efficiency improvement can result in a significant saving of
primary energy. This is due to the fact that efficiency in traditional thermal generation has values in the range
35-64 %, which is very low compared to efficiency in HV transmission (about 98 %) and storage (from 50 to 95
%).

Therefore, thermal generation presents the highest saving margins compared to HVDC and storage. Among
different technologies, and considering the decarbonisation policies, the substitution of older and less efficient
technologies (efficiency of 40 % or so) with CCGT would result in a significantly lower consumption of primary
energy, as latest CCGT are claimed to reach an efficiency of 64 %. For example, a simplified analysis carried out
for an ideal case of complete substitution of coal electricity generation by CCGT (considering data of 2018)
shows that it would make it possible to save about 378 TWh/year. Of course, other considerations should be
done in order to guarantee all necessary flexibility options to make it possible to run the power system in
security conditions.

As for storage options, many technologies are available, with completely different features and uses.
Therefore, their efficiencies cannot be simply compared, as fields of applications of various technologies are
different. Some storage systems are more oriented to energy applications, some to power applications; some
can store large amount of energy, some can provide small amount of energy but in very short time. Hence, for
example, one cannot decide to substitute a PHS with a Supercapacitor in order to increase the overall
efficiency.

However, this is not an issue, as it should be kept in mind that the goal of storage is not to save primary energy
directly, but to make it possible the best integration of RES, thus substituting electricity from fossil fuels with
RES based electricity, improving at the same time efficiency of residual thermal plants by flattening their load
diagram, obtaining a significant indirect saving of primary. According to estimates by ENTSOE, the not curtailed
RES energy could be reduced in 2030 by 10.6 TWh/year thanks to storage employment.

As for HVDC transmission systems, it is worth noticing that transmission efficiency of traditional HVAC systems
is today about 98 %, thanks to the extremely high rated voltage of the European transmission system (400 kV).
Therefore, there is not much room for further efficiency improvements, unless higher voltages are adopted, for
both DC and AC solutions, that would be not justified economically, however. At equal voltage levels, HVDC
systems are not an option to increase efficiency compared to HVAC transmission systems. They are a solution
when the HVAC transmission is not viable, i.e., in case of very long transmission lines (overhead lines longer
that about 800 km, cable lines longer than 100 km, interconnections of not synchronous areas, etc.). Moreover,
they should be considered as a tool to make the transmission system more flexible, in order to — again — better
integrate RES generation, thus saving indirectly primary energy. The typical example is the HVDC
interconnection of large offshore wind farms, which is sometimes the only feasible option to make it possible
their connection to the bulk power system.
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List of abbreviations and definitions

AC Alternate Current

ALK ALKaline electrolyser

BESS Battery Energy Storage Systems
CAES Compressed Air Energy Systems
CCGT Combined Cycle Gas Turbine

DC Direct Current

DCCB Direct Current Circuit Breaker
DOD Depth Of Discharge

EHV Extremely High Voltages

ENTSO-EEuropean Network of Transmission System Operators for Electricity

FACTS Flexible AC Transmission Systems
GT Gas Turbine

HP High Pressure

HRSG Heat Recovery Steam Generator
HV High Voltage

HVAC High Voltage Alternate Current
HVDC High Voltage Direct Current

IGBT Insulated Gate Bipolar Transistor
IGCC Integrated Gasification Combined Cycle
LAES Liquid Air Energy Systems

LCC Line Commutated Converter

LP Low Pressure

MMC Modular Multilevel Converter
MP Medium Pressure

OCGT Open Cycle Gas Turbine

P2H Power to Hydrogen

PEM Proton Exchange Membrane

PHS Pumped Hydro Storage
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ROW

RTE

SMES

SoC

STATCOM

SvC

TSO

TYNDP

VLA

VRLA

VSC

Renewable Energy System
Right-Of-Way

Round Trip Efficiency

Super Magnetic Energy System
State of Charge

STATic synchronous COMpensator
Static Var Compensator
Transmission System Operator
Ten-Year Network Development Plan
Vented Lead-Acid
Valve-Regulated Lead-Acid

Voltage Source Converter
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APPENDIX | - Coal

Table A.1 EU Annual Production of Electricity from Coal [TWh] (Source Bp Stats review 2020)

EU Annual Production of

EU Total Annual

Coal Production as a

Year Electricity from Coal [TWh] Electricity Production Proportion of Annual EU
[TWh] Electricity Generation [%]
1985 969,7 2321,0 41,8
1986 994,9 2377,1 41,9
1987 1010,0 2450,4 41,2
1988 998,7 2507,2 39,8
1989 1022,5 2564,0 39,9
1990 1040,2 2594,9 40,1
1991 1042,8 2640,8 39,5
1992 996,3 2624,6 38,0
1993 951,7 2627,2 36,2
1994 955,8 2665,8 35,9
1995 965,2 2747,0 35,1
1996 976,6 2842,4 34,4
1997 926,2 2858,3 32,4
1998 931,4 2925,1 31,8
1999 896,3 2955,4 30,3
2000 948,5 3037,7 31,2
2001 960,7 3119,7 30,8
2002 967,7 3142,9 30,8
2003 1025,5 3237,2 31,7
2004 1005,1 3305,6 30,4
2005 981,1 3327,3 29,5
2006 1003,8 3371,2 29,8
2007 1006,6 3384,3 29,7
2008 919,2 3388,7 27,1
2009 836,3 3224,4 25,9
2010 846,1 3364,7 25,1
2011 869,7 3299,2 26,4
2012 920,1 3295,4 27,9
2013 892,8 3269,6 27,3
2014 825,7 3188,4 25,9
2015 811,1 3236,6 25,1
2016 721,2 3259,4 22,1
2017 694,2 3290,0 21,1
2018 643,6 3270,1 19,7
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2019 488,4 3215,3 15,2

Table A.2. Classification of pulverized coal combustion (PCC) power plants in terms of steam parameters i.e., steam
temperature and pressure and materials necessary in high temperature components [1.3, 1.7]

n
oL Efficiency
Material in high ]
Superheater Coal Consumption
temperature
Technology temperature and LHV net
ressure
P components [gCOAL/kWh]
Hard coal
[%]

SUBCRITICAL <540°C Low alloy CMn

and Mo ferritic | <35 >380
SB < 22,1 MPa steels

Low alloy CrMo
SUPERCRITICAL 540°C+580°C steels and 9—

12% Cr 35+40 3804340
sc 22,1+25 MPa martensitic

steel

Improved 9—
E;IRASUPERCRITI 580°C+620°C 12% Cr

martensitic 40+45 340+320
USC 22+25 MPa steels and

austenitic steels
ADVANCED Advanced 10—
ULTRASUPERCRITI 12% Cr steels
CAL .

700°C+720°C and nickel
A-USC alloys 45352 3204290
25+35 MPa

(ONLY UNDER
STUDY)
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APPENDIX Il - Gas

Table A.3. Natural gas production as a proportion of annual global electricity generation (Source: Bp Stats review 2020)

Annual Production of Total Global Annual Natural Gas Production as a
Year Electricity from Natural Electricity Production Proportion of Annual Global
Gas [TWh] [TWh] Electricity Generation [%]
1973 740 6117 12,1
2004 3420 17 450 19,6
2005 3623 18 239 19,7
2006 3805 18 930 20,1
2007 4132 19771 20,9
2008 4299 20181 21,3
2009 4292 20 055 21,4
2010 4758 21431 22,2
2011 4846 22 126 21,9
2012 5100 22 668 22,5
2013 5084 23434 21,7
2014 5241 24 030 21,8
2015 5588 24 266 23,0
2016 5824 24 923 23,4
2017 5926 25643 23,1
2018 6083 26 653 22,8
2019 6298 27 005 23,3

Table A.4. EU Annual Production of Electricity from Natural Gas [TWh] (Source Bp Stats review 2020)

EU Annual Production of .. Natural Gas Production as a
Year Electricity from Natural Gas EU T::::’I::tril::llil‘;c;]r icity Proportion of Annual EU
[TWh] Electricity Generation [%]
1985 169,0 2321,0 7,28
1986 171,3 2377,1 7,21
1987 181,4 2450,4 7,40
1988 181,3 2507,2 7,23
1989 198,1 2564,0 7,73
1990 190,1 2594,9 7,33
1991 190,7 2640,8 7,22
1992 186,7 2624,6 7,11
1993 213,5 2627,2 8,13
1994 242,1 2665,8 9,08
1995 267,8 2747,0 9,75
1996 312,3 2842,4 10,99
1997 360,2 2858,3 12,60
1998 390,5 2925,1 13,35
1999 453,7 2955,4 15,35
2000 477,9 3037,7 15,73
2001 494,5 3119,7 15,85
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EU Annual Production of .. Natural Gas Production as a
Year Electricity from Natural Gas EU T::::jﬁ:t?;:l['f'l\?vc;; ieity Proportion of Annual EU
[TWh] Electricity Generation [%]
2002 527,6 3142,9 16,79
2003 570,5 3237,2 17,62
2004 617,6 3305,6 18,68
2005 668,5 3327,3 20,09
2006 683,1 3371,2 20,26
2007 738,8 3384,3 21,83
2008 790,7 3388,7 23,33
2009 733,1 3224,4 22,74
2010 764,8 3364,7 22,73
2011 701,3 3299,2 21,26
2012 580,6 3295,4 17,62
2013 507,4 3269,6 15,52
2014 456,0 3188,4 14,30
2015 495,3 3236,6 15,30
2016 608,1 3259,4 18,66
2017 660,7 3290,0 20,08
2018 621,2 3270,1 19,00
2019 692,2 3215,3 21,53

Overview of GT manufacturers

1.

4.

General Electric (including former Alstom, acquired at the end of 2015);

Siemens (formerly Siemens—Westinghouse, formerly separate companies, i.e., Kraftwerk Union (KWU)
Siemens Power Generation and Westinghouse Electric Corporation);

Mitsubishi Hitachi Power Systems (MHPS, formerly Mitsubishi Heavy Industries, MHI);

Ansaldo Energia.

Ratings and efficiencies of GTs are annually reported in two Journals i.e.:

— Gas Turbine World (GTW), http://www.gasturbineworld.com;

— Turbomachinery International (TMI), https://www.turbomachinerymag.com.

Table A.5 reports all the heavy-duty gas turbine up to 2020 with power ratings greater than 100 MW.

In order to understand the symbols in Table A.5, the following classification is used. In fact, heavy-duty
industrial gas turbines are subdivided in accordance with their nominal TIT (as already explained, the hot gas
temperature at the exit of the combustion section just before entry into the turbine). There are four major
classes:

— E class with nominal TIT of 1 300°C;

— Fclass with nominal TIT of 1 400°C;
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— H class with nominal TIT of 1 500°C;

— Jclass with nominal TIT of 1 600°C.

Table A.5 2018-2018 GT world simple cycle specifications [1.18]: power ratings > 100 MW

MODEL YEAR OF ISO BASE LOAD n NOTES
INTRODUCTION RATING
[%]
(MW]
ANSALDO ENERGIA
AE94.2 1981 185 36,2
AE94.2K 1981 170 36,5 LOW LHV FUEL
AE 94.3A 1995 325 40,1
GT26 2011 345 41,0
GT36-56 2016 340 41,0
GT36-S5 2016 500 41,5
GENERAL ELECTRIC
9E.03 1992 132 34,6
9E.04 2014 145 37,0
9F.03 1996 265 37,8
9F.04 2015 288 38,7
9F.05 2003 314 38,2
9HA.01 2011 446 43,1
Calculated TIT

9HA.02 2014 557 44,0 =1670 °C
MITSUBISHI HITACHI POWER SYSTEMS (50 Hz)
H-100 2013 118,08 38,3
M701DA 1981 144,09 34,8
M701G 1997 334 39,5
M701F 1992 385 41,9
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MODEL YEAR OF ISO BASE LOAD n NOTES
INTRODUCTION RATING
[%]
[(MW]

M701J 2014 478 42,3
M701JAC 2015 493 42,9
SIEMENS ENERGY (50 Hz)
SGT5-2000E 1981 187 36,2
SGT5-4000F 1995 329 41,0
SGT5-8000H 2008 450 41,0
SGT5-8000HL 2017 465 42,0
SGT5-9000HL 2017 564 42,5
PW POWER SYSTEMS (50 Hz)
FT4000SWIFTPAC120 2012 140,376 40,9
ETHOSENERGY
TG50D5U 2007 144,5 34,6
BHARAT HEAVY ELECTRICALS
MS9001E(9E.03) 2012 130,4 34,4
MS9001FB(9F.03) 1996 250,2 37,5
MS9001FB (9E.05) 2004 297,0 38,9

From Table A.5, state of the art in the largest and most efficient heavy-duty GTs can be summarized as follows:
— Outputs of 500 MWe;

— TITs of 1700°C;

— Cycle pressure ratios above 20:1 and as high as 25:1;

— Maximum Efficiency of 44%.

Advanced gas turbine

Many modifications can be implemented to the simple cycle of a GT in order to improve its overall efficiency.
Table A.6 sums up the different possibilities and the achievable efficiencies [101].

Table A.6 Modifications in GT cycle in order to increase efficiency

Typology of Efficiency Scheme
modification
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Typology of Efficiency Scheme
modification
Recuperator
Exhaust
gas <
TAVAVLY
Combustor
/ Generator
Recuperation 40,2 Compressor Turbine |— Zp
\ Electricity
y
Inlet
air
Reheat
Combustor combustor
Inlet
. Generator
Reheating Alstom . HP
Oompressor 1 turbine -.
Electricity
Exhaust
gas
Cooling
water
Intercooler
| A Fuel
AN
46 %
Intercooling
GE LMS 100

HP com
pressor pressor =

Electricity

LP com-
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Typology of
modification

Efficiency

Scheme

Exhaust heat
recovery boiler

Humid Air Turbine
(HAT) cycle

55 %

— —» To saturator

To stack « ANANA— 1
Water —pO—p—z\rvwvwv| £
xhaust
. Pum as
The_ net resu.It is P Steam g
an -ln.crease in Fuel
efficiency
o compared to v
Mass Injection the same — | Combustor
turbine without Gas
steam injection \ ‘/
of 2% - 4%. )
Compressor Turbine Generator
/ F
A
Cooling air
Air
Intercooler

Aftercooler

To saturator 4— — ——

Regenerator

Some authors propose to substitute the mechanical gearbox that links the turbine shaft with the synchronous
generator: this gearbox reduces the rotational speed by maintaining the rpm necessary to the synchronous

generator (depending on the polar couples). The gearbox could be substituted by a flexible electronic solution,

which offers the ability to operate with very high power and increases turbine efficiency by using variable

speed[102].

The paper does not give the overall efficiency gain, but it only specifies that the frequency converter efficiency

is 99,5 % whereas the typical efficiency of a gearbox is 98,5 %.

Figure B1 offers a suggestion of the electrical power generation system by using frequency converter.
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Figure B1. Scheme of the electrical power generation system using frequency converter
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Table C.1 Overview of the life of electric energy storage systems

APPENDIX Il — Storage

Technology Average Life [years] Discharge time
PHS 50 1 hour-more than 24 hours
CAES 20-40 1 hour-more than 24 hours
FES 15-20 seconds - 15 min
Pb-A 15-30 Typical rated discharge time: 5 h
Li-ion 5-16 Typical rated discharge time: 1 h
NiCd 10-15 10 minutes-5 hours
Nas 15-20 Typical rated discharge time: 8 h
NaNiCl; 15 Typical rated discharge time: 3 h
ULTRACAP 10-15 milliseconds-hours
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APPENDIX IV — HVDC Technologies

Table D.1. is adapted and updated from Cigré TB # 432 "Voltage Source Converter (VSC) HVDC for Power
Transmission — Economic Aspects and Comparison with other AC and DC Technologies" [103] Moreover, table
D.1 gives an immediate comparison between the two different HVDC technologies in terms of power
transmission.

Table D.1 Bulk Power transmission by means of HVDC-LCC and HVDC-VSC (updated from [103])

Power Range HVDC- LCC HVDC- VSC
7500 MW-12000 MW UHVDC Bulk (Bipole DC 1100 kV)
5000 MW- 7500 MW UHVDC Bulk (Bipole DC 800 kV) -
2500 MW-5000 MW UHVDC Bulk (Bipole DC 800 kV) -
1800 MW-3500 MW HVDC Classic (Bipole DC 500 kV) Bulk power VSC HVDC
(Overhead line)
700 MW-2000 MW HVDC Classic (Bipole DC 400kV-500kV) High power VSC HVDC
300 MW-800 MW HVDC Classic (Monopole DC 300kV-500kV) Medium power VSC HVDC
<300 MW HVDC Classic (Monopole DC< 300kV) Low power VSC HVDC

The main characteristics of HVDC-LCC are summed up in Table D.2. The table is taken from [103] but it has
been updated and adapted.

Table D.2 State of the art of HYDC — LCC (updated from [103])

Power Transmission Overhead lines Insulated Cables

Maximum voltage level 1100 kv DC 500 kV DC (600 kVq4c with PPL MI)
Maximum power rating <12000 MW

Maximum transmission distance Unlimited

Footprint 200 x 120 x 20 m (600 MW)

Active power flow control Continuous, min. 10% load

Reactive power demand 50%-60% of converter power rating

Compensated by breaker switched ac harmonic filters and reactive
power banks

AC Voltage control Slow, transformer tap change
Power Reversal DC voltage reversal
Necessary filter equipment High demand

Grid connection requirements SCR> 2 x power rating

Black start / island supply Not inherently available

Typical Power Loss in the two

. 1,4%
converter stations at full power
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Table D.3 sums up the main characteristics of HVDC-VSC.

Table D.3 State of the art of HYDC — VSC (updated from [103])

Power Transmission

Overhead lines Insulated Cables

Maximum voltage level

<640 kV <600 kV

Maximum power rating

<1600 MW

Maximum transmission distance

Theoretically unlimited (voltage drop over line)

Space requirements (examples)

120 x 50 x 11 m (550 MW); 48 x 25 x 27 m (500 MW) [w x | x h]

Active power flow control

Fast continuous

Reactive power demand

Can provide or consume controlled reactive power as required

AC Voltage control

Continuous, full response in < 100 ms

Power Reversal

DC current reversal

Necessary filter equipment

Low demand (PWM); Not necessary with other topologies

Grid connection requirements

Can supply power to a passive network

Black start / island supply

Black-start capability and island supply requires an aux. power
system to initially energize the cooling system (e.g.,by means of a
diesel generator)

HVDC-LCC converter station power losses

Table D.4 Converter station power losses due to each component in HVDC-LCC

Operation
Components
Standby Rated power
) AC 4% 4%
Filters
DC 0% <0.1%
Converter transformers 53% 47%
Thyristor valves 10% 36%
Smoothing reactor 0% 4%
Valve cooling system 4% 3%
Auxiliary | Transformer cooling system 4% 1%
systems
v Cooling system 15% 4%
Other systems 10% 1%
Total power losses @20 °C 100% 100%
Power loss Percentage (with reference to rated power) 0,11% 0,70%
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Table D.5 Typical station losses due to each component in HVDC-LCC (after Annex B IEC 61803 [104])

Item Typical losses at nominal operating
conditions
%
Thyristor valves 20-40*
Converter transformers 40-55
AC filters 4-10
Shunt capacitors (if used) 0,5-3
Shunt reactors (if used) 2-5
Smoothing reactor 4-13
DC filters 0,1-1
Auxiliaries 3-10
Total 100

* The total station no-load operation losses range from 10 % to 20 % of the total station operating losses at
rated power under nominal operating conditions

Figure. D1 HVDC-LCC: power losses of each converter station as a percentage of rated power for monopolar and bipolar
configurations

(@) Monopolar configuration (b) Bipolar configuration
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